1.

In a triangle ABC, If angles A, B, C are in AP and ∠A = 30° then what is 2sinA + 3tanB - 4cosC equal to? 1. 1 - √3 2. 13. 1+√34. 1 + 3√3

Answer» Correct Answer - Option 4 : 1 + 3√3

Concept:

In triangle ABC, A + B + C =180° 

If a, b,c are in AP then 2b = a + c

tan 60 = √3

Calculation:

Here, A, B, C are in AP, so 2B = A + C = 30 + C         .....(1)

ABC is a triangle, so A + B + C =180° ⇒ B = 150 - C .....(2)

Add (1) and (2), we get 

3B = 180 ⇒ B = 60° 

So, C = 90° 

2sinA + 3tanB - 4cosC = 2(sin 30) + 3 tan (60) - 4 cos 90

= 2(1/2) + 3 √3

= 1 + 3√3

Hence, option (4) is correct. 



Discussion

No Comment Found

Related InterviewSolutions