1.

In a triangle ABC, if `(cosA)/a=(cosB)/b=(cosC)/c` and the side `a =2`, then area of triangle is

Answer» Correct Answer - `sqrt3` sq. unit
`(cos A)/(a) = (cos B)/(b) = (cos C)/(c)`
or `(cos A)/(2R sin A) = (cos B)/(2R sin B) = (cos C)/(2R sin C)`
or `tan A = tan B = tan C`
Hence, triangle is equilateral.
Therefore, Area of triangle `= (sqrt3)/(4) a^(2) = sqrt3` (as a = 2)


Discussion

No Comment Found

Related InterviewSolutions