InterviewSolution
Saved Bookmarks
| 1. |
In ∆ ABC, Prove that: a2 = (b + c)2 − 4bc \(cos^2\frac{A}{2}\). |
|
Answer» RHS = (b + c)2 − 4bc cos2\(\frac{A}{2}\). = b2 + c2 + 2bc − 4bc \((\frac{cos\,A + 1}{2})\) = b2 + c2 + 2bc – 2bc (cos A + 1) = b2 + c2 − 2bc .\(\frac{b^2+c^2-a^2}{2bc}\) = b2 + c2 – (b2 + c2 – a2) = b2 + c2 – b2 – c2 + a2 = a2 = LHS ∴ LHS = RHS |
|