| 1. |
In an acute angled triangle ABC, AD is the median then prove that AD² = AB²/ 2 + AC²/ 2 - BC²/ 4 |
Answer» Step-by-step explanation:GivenAn ACUTE triangle ABC with AD as MEDIAN To proveAD² = AB²/ 2 + AC²/ 2 - BC²/ 4 ConstructionDraw AE perpendicular to BC. ProofIn triangle ABE, by Pythagoras Theorem AB² = BE² + AE² ........(1) In triangle ACE, by Pythagoras Theorem AC² = CE² + AE²..........(2) In triangle AED, by Pythagoras Theorem AD² = AE² + ED²..........(3) Also in triangle ABC EC - BE = (ED + DC) - (BD - ED) = ED + BD - BD + ED ( SINCE AD is median BD = DC) = 2ED or EC - BE = 2ED ,........(4) Adding (1) and (2) we get AB² +AC² = BE² + EC² + 2AE² or AE² = (AB² +AC² - BE² - EC²)/2 Putting value of AE² in (3) we get AD² = (AB² +AC² - BE² - EC²)/2 + ED² or AD² = AB²/2 + AC²/2 -BE²/2 - EC²/2 + (EC-BE)²/4 (Using equation (4) ) or AD² = AB²/2 + AC²/2 -BE²/2 - EC²/2 + (BE² + EC - 2EC.BE)/4 or AD² = AB²/2 + AC²/2 -(1/4)*(2BE² + 2EC² - BE² - EC + 2EC.BE) or AD² = AB²/2 + AC²/2 -(1/4)*(BE² + EC² + 2EC.BE) or AD² = AB²/2 + AC²/2 -(1/4)*(BE + EC)² or AD² = AB²/2 + AC²/2 -(1/4)*(BC)² or AD² = AB²/2 + AC²/2 -(BC)²/4 Hence PROVED. |
|