1.

In an acute angled triangle ABC, `r + r_(1) = r_(2) + r_(3) and angleB gt (pi)/(3)`, thenA. `b + 2c lt 2a lt 2b + 2c`B. `b + 4cc lt 4a lt 2b + 4c`C. `b + 4c lt 4a lt 4b + 4c`D. `b + 3c lt 3a lt 3b + 3c`

Answer» Correct Answer - D
`r - r_(2) = r_(3) -r_(1)`
`rArr (Delta)/(s) - (Delta)/(s-b) = (Delta)/(s-c) -(Delta)/(s-a)`
or `(-b)/(s(-b)) = (c-a)/((s-a) (s-c))`
or `((s-a) (s-c))/(s(s-b)) = (a-c)/(b)`
`rArr tan^(2).(B)/(2) = (a-c)/(b)`
But `(B)/(2) in ((pi)/(6), (pi)/(4))`. Therefore,
`tan^(2).(B)/(2) in ((1)/(3),1)`
`rArr (1)/(3) lt (a-c)/(b) lt 1`
or `b lt 3a -3c lt 3b`
or `b + 3c lt 3a lt 3b + 3c`


Discussion

No Comment Found

Related InterviewSolutions