InterviewSolution
Saved Bookmarks
| 1. |
In any triangle ABC, `sinA -cosB=cosC`, then angle B isA. `pi/2`B. `pi/3`C. `pi/4`D. `pi/6` |
|
Answer» Correct Answer - a We have, `sinA-cosB=cosC` `sinA=cosB+cosC` `rArr 2sinA/2cosA/2=2cos(B+C)/2cos(B-C)/2` `rArr 2sinA/c cosA/2=2cos(pi-A)/2 cos(B-C)/(2)` `therefore A+B+C=pi` `rArr 2sinA/2 cosA/2=2sinA/2cos(B-C)/(2)` `rArr cosA/2=cos(B-C)/(2)` or `A=B-C`, But A+B+C=`pi` Therefore `2B=pi rArr B=pi/2` |
|