InterviewSolution
Saved Bookmarks
| 1. |
In `DeltaABC`, prove that: `sin(A+B/2).cosB/2=(c+a)/(a+b)cosC/2.cos(A-B)/(2)` |
|
Answer» RHS. `=(c+a)/(a+b).cosC/2.cos(A-B)/(2)` `(ksinc+ksinA)/(ksinA+ksinB).cosC/2cos(A-B)/(2)` `=(2sin(C+A)/(2).cos(C-A)/(2))/(2ain(A+B)/(2).cos(A-B)/(2)).cosC/2.cos(A-B)/(2)` `=(sin(180^(@)-B)/(2).cos(180^(2)-(A+B)-A)/(2))/(sin(180^(@)-C)/(2)).cos(C/2)` `=(sin(90^(@)-B/2)cos{90^(@)-(A+B/2)})/(sin(90^(@)-C/2)cosC/2` `=(cosB/2.sin(A+B/2))/(cos(C/2)).cos(C/2)` `=cos(B/2).sin(A+B/2)`=LHS Hence Proved. |
|