InterviewSolution
Saved Bookmarks
| 1. |
In `DeltaABC`, prove that: `sinA+sinB-sinC=4sinA/2sinB/2cosC/2` |
|
Answer» LHS `=sinA+sinB-sinC` `=2sin(A+B)/(2).cos(A-B)/2-2sinC/2cosC/2` `=2sin(180^(@)-C)/(2)cos(A-B)/2(2)` `(therefore A+B+C=180^(@))` `=2sin(90^(@)-C/2)cos(A-B)/(2)-2sin{90^(@)-(A+B)/(2)}cosC/2` `=2cosC/2cos(A-B)/(2)-2cos(A+B)/(2)cosC/2` `=2cosC/2[cos(A-B)/(2)-cos(A+B)/2]` `=2cosC/2.2sinA/2sinB/2` `=4sinA/2sinB/2cosC/2`=RHS Hence Proved. |
|