InterviewSolution
Saved Bookmarks
| 1. |
In Example 94, if `P(U_(i))=C`, where C is a constant, then `P(U_(n)//W)` is equal toA. `(2)/(n+1)`B. `(1)/(n+1)`C. `(n)/(n+1)`D. `(1)/(2)` |
|
Answer» Correct Answer - A We have, `P(U_(i))=C,i=1,2,3,..,n` `therefore underset(i=1)overset(n)sum P(U_(i))=1 implies underset(i=1)overset(n)sum C=1 implies C=(1)/(n)` `therefore P(U_(i))=(1)/(n), i=1,2,3,..,n` `therefore P(U_(n)//W)=(P(U_(n) cap W))/(P(W))` `implies P(U_(n)//W)=(P(U_(n) cap W))/(underset(i=1)overset(n)sum (U_(i) cap W))` `implies P(U_(n)RW)=(P(U_(n))P(W//U_(n)))/(sum i=1^(n) P(U_(i))P(W//U_(i)))=((1)/(n)xx(n)/(n+1))/(underset(i=1)overset(n)sumCxx(1)/(n+1))` `implies P(U_(n)//W)=(1)/(C underset(i=1)overset(n)sum i)=(1)/((1)/(n)xx(n(n+1))/(2))=(2)/(n+1)` |
|