

InterviewSolution
Saved Bookmarks
1. |
In Fig., X and Y are respectively the mid-points of the opposite sides AD and BC of a parallelogram ABCD. Also, BX and DY intersect AC at P and Q, respectively. Show that AP = PQ = QC. |
Answer» AD = BC (Opposite sides of a parallelogram) Therefore, DX = BY ( 1/2 AD = 1/2 BC) Also, DX || BY (As AD || BC) So, XBYD is a parallelogram (A pair of opposite sides equal and parallel) i.e., PX || QD Therefore, AP = PQ (From ∆AQD where X is mid-point of AD) Similarly, from ∆CPB, CQ = PQ (1) Thus, AP = PQ = CQ [From (1) and (2)] (2) |
|