InterviewSolution
| 1. |
In figure, CD and RS are medians of ∆ABC and ∆PQR respectively. If ∆ABC ~ ∆PQR then Prove that :(i) ∆ABC ~ ∆PQR(ii) \(\frac { CD }{ RS }\) = \(\frac { AB }{ PQ }\) |
|
Answer» (i) Given : Two similar triangles ABC and PQR CD ⊥ AB and RS ⊥ PQ. To prove : ∆ADC ~ ∆PSR Proof : \(\frac { CA }{ RP }\) = \(\frac { AB }{ PQ }\) ⇒ \(\frac { CA }{ RP }\) = \(\frac { 2AD }{ 2PS }\) (Since D and S. are medians of AB and PQ) Now, in ∆ACD and ∆PRS, \(\frac { CA }{ RP }\) = \(\frac { AD }{ PS }\) and ∠A = ∠P (∵ ∆ABC ~ ∆PQR) ∠ADC = ∠PSR = 90° Thus, by AA similarity Criterion. ∆ADC ~ ∆PSR. (ii) Given : ∆ADC ~ ∆PSR. To prove : \(\frac { CD }{ RS }\) = \(\frac { AB }{ PQ }\) Proof : Given that ∆ABC and ∆PQR are similar. So ∠A = ∠P ….(i) (∵ Corresponding angle S of similar triangles are same.) \(\frac { CA }{ RP }\) = \(\frac { AB }{ PQ }\) = \(\frac { CB }{ RQ }\) ….(ii) No, In ∆CAD and ∆RPS, ∠A = ∠P (given) ∠CDA = ∠RSP = 90° By A-A similarity criterion ∆CDA ~ ∆RSP \(\frac { CA }{ RP }\) = \(\frac { CD }{ RS }\) From equation (ii) and (iii) \(\frac { CD }{ RS }\) = \(\frac { AB }{ PQ }\) |
|