InterviewSolution
Saved Bookmarks
| 1. |
In the adjoining figure, seg `XY||` seg `AC`, IF `3AX=2BX` and `XY=9` then find the length of `AC`. |
|
Answer» `3AX=2BX` `:.(AX)/(BX)=(2)/(3)` By componendo, we get `(AX+BX)/(BX)=(2+3)/(3)` `(AB)/(BX)=(5)/(3)` `:.` by invertendo, we get `(BX)/(AB)=(3)/(5)`……`(1)` In `DeltaBXY` and `DeltaBAC` , `/_BXY~=/_BAC`…….(Corresponding angles) `/_XBY~=/_ABC`.......(Common angle) `:.DeltaBXY~DeltaBAC`......("AA" test of similarity) `:.(BX)/(AB)=(XY)/(AC)`......(Corresponding sides of similar triangle) `:.(3)/(5)=(9)/(AC)`........[From `(1)`] `:.3xxAC=9xx5` `:.AC=(9xx5)/(3)` `AC=15` |
|