InterviewSolution
| 1. |
In given figure, AD is median of ∆ABC and AM ⊥ BC. Prove that :(i) AC2 = AD2 + BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\)(ii) AB2 = AD2 – BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\)(iii) AC2 + AB2 = 2AD2 + \(\frac { 1 }{ 2 }\) BC2 |
|
Answer» Given: In ∆ABC, D is mid-point of BC since AD is median AM ⊥ BC and AC > AB. To prove: (i) AC2 = AD2 + BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) (ii) AB2 = AD2 – BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) (iii) AC2 + AB2 = 2AD2 + \(\frac { 1 }{ 2 }\) BC2 Proof : (i) In right angled ∆AMD AD2 = AM2 + DM2 AM2 = AD2 – DM2 in right ∆AMC AC2 = AM2 + MC2 …..(ii) From equation (i) and (ii), AC2 = (AD2 – DM2) + MC2 ⇒ AC2 = (AD2 – DM2) + (DM + DC)2 (∵ MC = DM + DC) ⇒ AC2 = AD2 – DM2 + DM2 + DC2 + 2DM.DC AC2 = AD2 + DC2 + 2DM.DC AC2 = AD2 + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) + 2DM·\(\frac { BC }{ 2 }\) Thus, AC2 = AD2 + BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) …..(iii) (ii) In right ∆AMB AB2 = AM2 + BM2 = (AD2 – DM2) + BM2 [using equation (i)] = (AD2 – DM2) + (BD – DM)2 = AD2 – DM2 + BD2 + DM2 – 2 BD.DM AD2 + BD2 – 2BD.DM = AD2 + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) – 2 × \(\frac { 1 }{ 2 }\) BC. DM ∴ AB2 = AD – BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) Thus, AB2 = AD – BC.DM + \({ \left( \frac { BC }{ 2 } \right) }^{ 2 }\) ……(iv) Adding equation (iii) and (iv) AB2 + AC2 = 2AD2 + 2 × \(\frac { 1 }{ 4 }\) BC2 = 2AD2 + \(\frac { 1 }{ 2 }\) BC2 Thus, AB2 + AC2 = 2AD2 + \(\frac { 1 }{ 2 }\) BC2 |
|