1.

In the adjacent rectangle ABCD ∠OCD = 30° . Calculate ∠BOC. What type of triangle is BOC.

Answer»

∠BCD = 90° [Angle of a rectangle] 

∠OCD + ∠OCB = 90° 

30° + ∠QCB = 90° 

∠OCB = 90° – 30° 

∠OCB = 60° 

∠OCB = ∠OBC = 60° 

OC = OB 

[Diagonals of a rectangle bisect each other] 

∴ ∠BOC = 180° – (60° + 60°) 

= 180° -120° 

∠BOC = 60° 

In Δ BOC, 

∠BOC = ∠OBC = ∠OCB = 60° 

& equiangular triangle 

∴ BOC is an equiangular triangle.



Discussion

No Comment Found

Related InterviewSolutions