1.

In the diagram, CDP is a straight line, ΔAQD is equilateral ∠BAR= 90°, ∠QAR= 135°, ∠BCD = 106° and ∠ABC = 100°. Then, ∠PDQ equals.(a) 39° (b) 21° (c) 41° (d) 53°

Answer»

(c) 41°

ΔAQD is an equilateral Δ 

⇒ ∠QAD = ∠QDA = ∠AQD = 60° 

∠BAD = 360° – (135° + 90° + 60°) 

= 360° – 285° = 75° (Angles round a pt.) 

Also, in quad. ABCD, 

∠CDA = 360°– (100° + 106° + 75°) 

= 360° – 281° = 79°. 

∴ ∠PDQ =180° – (∠CDA+ ∠QDA)         (CDP is a st. line) 

= 180° – (79° + 60°) = 180° – 139° = 41°.



Discussion

No Comment Found