InterviewSolution
Saved Bookmarks
| 1. |
In the figure, `AD=17`, `AB=10`, `BC=15`. `/_ABC=/_BCD=90^(@)` seg `AE bot` side `CD` then find the length of `(i) AE` `(ii) DE` `(iii) DC`. |
|
Answer» In `square ABCE`, `/_ABC=/_BCE=/_CEA=90^(@)`…….(Given) `:./_EAB=90^(@)`…….(Remaining angle of a quadrilateral) `:. Square ABCE` is rectangle. `(i) :.AE=BC`……(Opposite sides of rectangle are equal) `:.AE=15` `(ii)` In `DeltaDEA`, `/_DEA=90^(@)` `:.` by Pythagoras theorem, `AD^(2)=AE^(2)+ED^(2)` `:.17^(2)=15^(2)+ED^(2)` `:.ED^(2)=17^(2)-15^(2)` `:.ED^(2)=289-225` `:.ED^(2)=64` `:.ED=8` `(iii) CE=AB` .......(Opposite sides of rectangle are equal) `:.CE=10` `CD=CE+ED`.......`(C-E-D)` `:.CD=10+8` `:.CD=18` |
|