Saved Bookmarks
| 1. |
In the following circuit (Fig.)the switch is closed at t = 0. Intially, there is no current in inductor. Find out the equation of current in the inductor coil as s function of time. |
|
Answer» SOLUTION :At any time `t, - epsilon + i_(1) R - (i - i_(1)) R = 0` `- epsilon + 2i_(1) R - iR = 0` `i_(1) = (iR + epsilon)/(2R)` Now `- epsilon + i_(1)R + iR + L(DI)/(dt) = 0` `- epsilon+ ((iR + epsilon)/(2)) + iR + L(di)/(dt) = 0` `(epsilon)/(2) + (3iR)/(2) = - L(di)/(dt)` `((epsilon + 3iR)/(2)) dt = - L di rArr - int_(0)^(t) (dt)/(2L) = int_(0)^(i) (di)/(-epsilon + 3iR)` `(t)/(2L) = (1)/(3R)` In `((- varepsilon + 3iR)/(-varepsilon)) rArr -In ((- varepsilon + 3iR)/(-varepsilon)) = (3Rt)/(2L)` `i = + (varepsilon)/(3R) (1 - e^(-(3Rt)/(2L)))` |
|