

InterviewSolution
Saved Bookmarks
1. |
In the given figure, PQ and RS intersect each other at o ray OR and ray OB bisect POR and POS respectively. If POA:POB = 2:7, then find SOQ and BOQ |
Answer» <html><body><ul><li>Answer:</li><li>55</li><li>Step-by-step explanation:</li><li>in triangle <a href="https://interviewquestions.tuteehub.com/tag/pqr-592656" style="font-weight:bold;" target="_blank" title="Click to know more about PQR">PQR</a>,</li><li>PQ=PR. Therefore PQR is an <a href="https://interviewquestions.tuteehub.com/tag/isosceles-1052517" style="font-weight:bold;" target="_blank" title="Click to know more about ISOSCELES">ISOSCELES</a> triangle.</li><li>therefore, angle Q= angle R(because angles opposite to <a href="https://interviewquestions.tuteehub.com/tag/equal-446400" style="font-weight:bold;" target="_blank" title="Click to know more about EQUAL">EQUAL</a> sides of an isosceles triangle are equal)</li><li>angle P +angle Q + angle R= 180°(angle sum property)</li><li><a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>*angle Q + angle P = 180°(angle Q= angle R)</li><li>2*angle Q=180°-70°</li><li>angle Q= 110°/2</li><li>angle Q=55°=angle R</li></ul><p></p></body></html> | |