

InterviewSolution
Saved Bookmarks
1. |
In the given figure, PQRS is a rectangle. If ∠RPQ = 30° then find the value of (x + y). |
Answer» Since, diagonal of a rectangle are equal and bisect each other and vice versa. OR = OS ⇒ ∠ORS = ∠OSR …(i) Also PQ || SR ⇒ ∠OPQ = ∠ORS = 30° …(ii) (alt. angles) In ΔORS, ∠ORS + ∠OSR + y = 180° (angle sum property) ⇒ 30° + 30° + y = 180° [using (i) and (ii)] ⇒ y = 120° Also OR = OQ ⇒ ∠ORQ = ∠OQR = x In ΔORQ, x + x + ∠ROQ = 180° ⇒ 2x + 60° = 180° (∵ y + ∠ROQ = 180° i.e. linear pair of angles) ⇒ x = \(\frac { 120 }{ 2 }\) = 60° x + y = 60° + 120° = 180° |
|