1.

In the nuclear reaction : p+^(15)N to_(Z)^(A)X+n (a) Find A, Z and identify the nucleus X. (b) Find the Q- value of the reaction. (c ) If the proton were to collide with the ^(15)N at rest, find the minimum K.E. needed by the proton to initiate the above reaction . (d) If the proton has the twice the energy in (c ) and the outgoing neutron emerges an angle of 90^(@) with the direction of the incident proton, find the momentum of the nucleus X {:(m(p)=1.007825u,, m('^(15)C)=15.0106u,, m('^(16)N)=16.001u),(m('^(15)N)=15.000u,,m('^(16)O)=15.9949u,,),(m(n)=1.008665u,,m('^(15)O)=15.0031u,,and 1u~~931.5MeV):}

Answer»

SOLUTION :(`a`) The nucleus is identified by , `Z=8`, `A=15rArrX="_(8)O^(13)`
(`B`) `Q=[m(p)+m(N^(15))-m(O^(15))-m(n)]c^(2)`
`=[1.007825+15.000-15.0031-1.008665]xx931.5MeV= -3.67MeV`
(`c`) `K_(th)=- Q(1)/(4piepsilon_(0))((Q)/(2pi)d theta)q//R^(2)=3.9MeV`
(`d`) Now, `E_(k)=2xxK_(th)=2xx3.9MeV=7.8MeV` and `Q= -3.63 MeV`

(`i`) CONSERVATION of momentum: `sqrt((T)/(mu))=sqrt((1)/(8pi^(2)epsilon_(0))(Qq)/(R^(2))//(m)/(2piR))=sqrt((Qq)/(4piepsilon_(0)mR))`
`p_(0)sintheta=p_(n)`
(`ii`) Conservation of energy
`(p_(0)^(2))/(2m_(n))+(p_(0)^(2))/(2m_(0))=E_(k)+Q`
`p_(n)^(2)=(E_(k)(1-(m_(p))/(m_(0)))+Q)/((1)/(2m_(0))+(1)/(2m_(n)))`
Subsituting the values, `p_(n)=79.4MeV//c`
`p_(0)costheta=121 MeV//c`
`p_(0)sintheta=79.4MeV//c`
`p_(0)=145MeV//c`
`theta=33^(@)`.


Discussion

No Comment Found

Related InterviewSolutions