Saved Bookmarks
| 1. |
In the situation as shown in Figure, (cos53^(@)=(3)/(5)) |
|
Answer» velocity of image wrt mirror is `-22hat(i)-24hat(j)` `vecv_(m)=` velocity of mirror`=-2hat(i)ms^(-1)` `m+(F)/(f-u)=(-20)/(-20-(-30))=-2` For velocity component parallel to OPTICAL AXIS, `(vecv_(I//m))_(||)=-m^(2)(vecv_(O//m))_(||)` `(vecv_(I//m))_(||)=-(-2)^(2)11hat(i)=-44hat(i)ms^(-1)` For velocity component perpendicular to optical axis `(vecv_(I//m))_(_|_)=m(vecv_(o//m))_(_|_)=-(-2)12hat(j)=-24hat(j)ms^(-1)` `(vecv_(I//m))=` velocity of image with respet to mirror `vecv_(I//m)=(vecv_(I//m))_(||)+(vecv_(I//m))_(_|_)=(-44hat(i)-24hat(j))ms^(-1)` ALSO, `vecv_(I//m)=vecv_(I)-vecv_(m)` or `vecv_(I)=vecv_(I//m)+vecv_(m)=(-44hat(i)-24hat(j))-2hat(i)=(-46hat(i)-24hat(j))ms^(-1)`
|
|