1.

In triangle ABC, if `r_(1)+r_(2)=3R` and `r_(2)+r_(3)=2R`, thenA. `angle A =90^(@)`B. `angle B=45^(@)`C. `angle C=60^(@)`D. triangle ABC is right angled isosceles

Answer» Correct Answer - A::C
`r_(1)+r_(2)=3R`
`rArr ((Delta)/(s-a))+((Delta)/(s-b))=3((abc)/(4Delta))`
`rArr(Delta^(2))/((s-a)(s-b))=(3ab)/(4)`
`rArr 4s(s-c)=3ab`
`rArr "cos"(C )/(2)=(sqrt(3))/(2)rArr angle C=60^(@)`
Also, `r_(2)+r_(3)=2R`
`rArr ((Delta)/(s-b))+((Delta)/(s-c))=2((abc)/(4Delta))`
`rArr 2s(s-a)=bc`
`rArr "cos"(A)/(2)=(1)/(sqrt(2))`
`rArr angle = 90^(@)` and `angle B = 30^(@)`


Discussion

No Comment Found

Related InterviewSolutions