Saved Bookmarks
| 1. |
Ina triangle ABC, the sides AB and AC are represented by the vectors 3hati+hatj+hatk and hati+2hatj+hatk respectively. Calculate the angle angleABC. |
|
Answer» `cos^(-1)sqrt((5)/(11))` `vec(AC)=(hati+2hatj+hatk)` `:. Vec(CB) = vec(AB)- vec(AC)` `= 3hati+hatj+hatj+hatk-hati-2hatj-hatk=2hati-hatj` `because angleABC=theta` is the angle between `vec(AB) ` and `vec(CB)` , `:. bar(AB) . bar(CB) = |bar(AB)|.|bar(CB)|cos theta` `implies ( 3hati+hatj+hatk).(2hati-hatj)` `=(sqrt((3)^(2)+(1)^(2)+(1)^(2)))(sqrt((2)^(2)+(-1)^(2)))costheta` `=6+(-1)+0=sqrt(11) . sqrt(5)cos theta` `:. cos theta= (5)/(sqrt(11).sqrt(5))=(sqrt(5))/(sqrt(11))or theta= cos^(-1)[sqrt((5)/(11))]` |
|