InterviewSolution
Saved Bookmarks
| 1. |
`int(1)/(cos x - sin x )dx` is equal toA. `(1)/(sqrt(2))log|tan((x)/(2)-(3pi)/(8))|+C`B. `(1)/(sqrt(2))log|"cot"(x)/(2)|+C`C. `(1)/(sqrt(2))log|tan((x)/(2)-(pi)/(8))+C`D. `(1)/(sqrt(2))log|tan((x)/(2)+(3pi)/(8))|+C` |
|
Answer» Correct Answer - d We have , `I= int(1)/(cos x - sin x )dx = (1)/(sqrt(2))int(1)/(cos x " cos" (pi)/(4)- sin x " sin" (pi)/(4))dx` `rarr I= (1)/(sqrt(2))int(1)/(cos(x+(pi)/(4)))dx= (1)/(sqrt(2))intsec(x+(pi)/(4))dx` `rArr I= (1)/(sqrt(2))log|tan ((pi)/(4)+(x)/(2)+(pi)/(8))|+C= (1)/(sqrt(2))log|tan ((x)/(2)+(3pi)/(8))|+C` |
|