1.

`int(1-tanx)/(1+tanx)dx` का मान ज्ञात कीजिए।

Answer» `int (1-tanx)/(1+tanx) dx = f int (1-(sinx)/(cosx))/(1+(sinx)/(cosx)) dx = int (cos x- sin x)/(cosx +sinx)`
माना `cosx + sin x = t`
`rArr (- sin x + cosx) dx = dt`
`rArr " "(cosx - sin x)dx = dt`
`therefore int(1-tan x)/(1+tan x) dx = int(cos x - sinx)/(cos x + sin)dx = int(1)/(dt) = log t = log (cosx + sinx)`


Discussion

No Comment Found