InterviewSolution
Saved Bookmarks
| 1. |
`int(1)/(x^(2)+x+1)` का मान ज्ञात कीजिए । |
|
Answer» हम जानते हैं कि `x^(2)+x+1=x^(2)+x+(1)/(4)+(1-(1)/(4))=(x+(1)/(2))^(2)+(x+(1)/(2))^(2)+((sqrt3)/(2))^(2)` `therefore (1)/(x^(2)+x+1)dx=int(1)/((x+(1)/(2))^(2)+((sqrt3)/(2))^(2))dx` `=int(1)/(t^(2)+((sqrt3)/(2))^(2))dt" "` जहाँ `x+(1)/(2)=t rArr dx=dt` `=(1)/(sqrt3//2)tn^(-1)((t)/(sqrt3//2))+c` `=(2)/(sqrt3)tan^(-1)[(2)/(sqrt3)(x+(1)/(2))]+c` `=(2)/(sqrt3)tam^(-1)((2x+1)/(sqrt3))+c` |
|