1.

`int((3sinx - 2)cosx)/((5-cos^(2) x - 4sinx))` का मान ज्ञात कीजिए।

Answer» माना `I int ((3sinx - 2)cosx)/((5 - cos^(2) x - 4 sinx))`
` = int ((3sin x - 2)cos x)/((4+sin^(2)x - 4sinx))`
` =int ((3sinx - 2) cosx)/((2-sinx)^(2))dx`
यदि `2-sin x = t, sin x = 2 - t `व` cos xdx = dt`
अब ` I = - int({3(2-t)-2})/(t^(2))`
` = - int((4-3t))/(t^(2))dt = int((3t - 4))/(t^(2))dt`
` = int((3)/(t) - (4)/(t^(2)))dt = 3 log (t) +(4)/(t) +c`
`= 3log (2-sinx)+(4)/((2-sinx))+c`


Discussion

No Comment Found