Saved Bookmarks
| 1. |
`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.` Hence evaluate : `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.` |
|
Answer» `intf(x)dx=int_(a)^(b)f(a+b-x)Dx` Since we know that the following properties, `int_(a)^(b)f(x)dx=-int_(b)^(a)f(x)dx" …(i)"` and `" "int_(a)^(b)f(x)=int_(a)^(b)f(t)dt" …(ii)"` Consider, `int_(a)^(b)f(x)dx` Putting `x=a+b - t." "(because t = a+b-x)` `rArr" "dx=-dt` When `x=a,` then `t=a+b-a=b` When `x=b`, then `t=a+b-b=a` `therefore int_(a)^(b)f(x)dx=int_(b)^(a)f(a+b-t)(-dt)` `=-int_(b)^(a)f(a+h-t)dt` `=int_(a)^(b)f(a+b-t)dt" [By equation (i)]"` `=int_(a)^(b)f(a+b-t)dx" [By equation (ii)]"` And now, `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx` `"Let I"=int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx" ...(iii)"` And`" I"=int_(a)^(b)(f(a+b-x))/(f(a+b-x)+f(x))" ...(iv)"` Adding equations (i) and (ii), we get `2I=int_(a)^(b)(f(x)+f(a+b-x))/(f(x)+f(a+b-x))dx` `=int_(a)^(b)1.dx` `=[x]_(a)^(b)` `therefore" "2I=b-a` `therefore" "I=(b-a)/(2)` `therefore" "=int_(a)^(b)(f(x))/(f(x)+f(A+b-x))dx` `=(b-a)/(2)` |
|