1.

`int(dx)/(5+4cosx)`का मान ज्ञात कीजिये ।

Answer» माना ` I = int(dx)/(5+4cosx)`
`=int(dx)/(5[sin^(2).(x)/(2) + cos^(2).(x)/(2)] +4[cos^(2).(x)/(2)sin^(2).(x)/(2)])`
`= int(dx)/(9cos^(2) x//2 +sin^(2)x//2)`
अश व हर को `cos^(2)s//2` से भगा देने पर
`I = int (sec^(2)x//2dx)/(9+tan^(2)x//2)=(1)/(9)int(sec^(2)x//2sx)/(1+((tanx//2)/(3)))`
माना `(tan x//2)/(3) = t therefore (1)/(6) sec^(2)x//2 dx = dt`
`rArr " "sec^(2) x//2 dx = 6dt`
`therefore " "I= (6)/(9)int(dt)/(1+t^(2)) = (2)/(3) tan^(-1) t = (2)/(3) tan^(-1)((tanx//2)/(3))`


Discussion

No Comment Found