InterviewSolution
Saved Bookmarks
| 1. |
`int(x+3)sqrt(3-4x-x^(2))dx` का मान ज्ञात कीजिए । |
|
Answer» `int(x+3)sqrt(3-4x-x^(2))dx` अब माना कि `x(x+3)=A.(d)/(dx)(3-4x-x^(2))+B` `rArr" "(x+3)=A(-4-2x)+B" …(1)"` अब समीकरण (1 ) के दोनों पक्षों में x की घातों की तुलना करने पर `-2A=1 rArr A=-(1)/(2)` तथा `-4A+B=3 rArr B=1` अब `int(x+3)sqrt(3-4x-x^(2))dx` `=int{-(1)/(2)(-4-2x)+1}.sqrt(3-4x-x^(2))dx` `=-(1)/(2)int(-4-2x)sqrt(3-4x-x^(2))dx+intsqrt(3-4x-x^(2))dx` यदि `3-4x-x^(2)=t" व "dt=(-4-2x)dx` `=-(1)/(2)intsqrtt dt +int sqrt(7-(4x+x^(2)+4))dx` `=(-(1)/(2)xxt^(3//2)xx(2)/(3))+intsqrt((sqrt7)^(2)-(x+2)^(2))dx` `=-(1)/(3)(3-4x-x^(2))^(3//2)+(1)/(2)(x+2)sqrt(3-4x-x^(2))+(7)/(2)sin^(-1)((x+2)/(sqrt7))+c` `[" यहाँ "intsqrt(a^(2)-x^(2))dx=(x)/(2)sqrt(A^(2)-x^(2))+(a^(2))/(2)sin^(-1).(x)/(a)+c]` |
|