InterviewSolution
Saved Bookmarks
| 1. |
`int(x^(4)+1)/(x^(6)+1)dx` is equal toA. `tan^(-1)x+(1)/(3)tan^(-1)x^(3)+C`B. `tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`C. `-tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`D. none of these |
|
Answer» Correct Answer - a `I=int(x^(4)+1)/(x^(6)+1)dx=int((x^(4)-x^(2)+1)+x^(2))/(x^(6)+1)dx` `rArr I=int(x^(4)-x^(2)+1)/((x^(2))+1)dx+int(x^(2))/(x^(6)+1)dx` `rArr I= int(1)/(x^(2)+1)dx+(1)/(3)int(1)/((x^(3))^(2)+1)d(x^(3))` `rArr I=tan^(-1)x+(1)/(3)tan^(-1)(x^(3))+C` |
|