1.

`int(x^(e-1) - e^(x-1))/(x^(e) - e^(x))dx` का मान ज्ञात कीजिये ।

Answer» मान `I=int (x^(e-1) - e^(x-1))/(x^(e) - e^(x))dx`
माना `x^(e) - e^(x) = t`
`(ex^(e-1) - e^(x)) dx = dt `
`therefore " "e(x^(e-1) - e^(x-1))dx = dt`
`rArr " "(x^(e-1) - e^(x-1))dx = (1)/(e) dt`
`therefore" "I = (1)/(e)int(dt)/(t) = (1)/(e)logt`
`therefore" "I =(1)/(e)int(dt)/(e) = (1)/(e) log t`
`therefore" "I = (1)/(e) log(x^(e) - e^(x))`


Discussion

No Comment Found