1.

`int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx` is equal toA. `(1)/(2)In (1+sqrt(1+x^(2)))+C`B. `(-2)/(3(1+sqrt(1+x^(2)))^(3//2))+C`C. `2(1+sqrt(1+x^(2)))+C`D. `2sqrt(1+sqrt(1+x^(2)))+C`

Answer» Correct Answer - d
Let `1+x^(2)=t^(2)`. then x dx = t dt `thereforeI=int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx`
`rArr I=int(t)/(sqrt(t^(2)+t^(3)))dt=int(1)/(sqrt(1+t))dt=2sqrt(1+t)+C`
`rArr I=2sqrt(1+sqrt(1+x^(2)))+C`


Discussion

No Comment Found

Related InterviewSolutions