1.

Integrate with the limits √ln2 to √ln3 x*sinx^2/sinx^2+sin(ln6-x^2) dx​

Answer»

EXPLANATION.

\sf \implies \displaystyle \int_{\sqrt{ln2} }^{\sqrt{ln3} } \dfrac{x sin(x^{2} )}{sin(x^{2} ) + sin(ln 6 - x^{2} )} <klux>DX</klux>

As we know that,

We can use substitution method in this equation, we get.

Let, we assume that.

⇒ x² = t.

Differentiate w.r.t x, we get.

⇒ 2x dx = dt.

⇒ x dx = dt/2.

As we know that,

In definite integration, if we apply substitution method then limit will also CHANGE, we get.

First, we put the lower limit, we get.

⇒ (√㏑2)² = t.

⇒ ㏑2 = t. = [NEW lower limit].

⇒ (√㏑3)² = t.

⇒ ㏑3 = t. = [new UPPER limit].

Put the values in the equation, we get.

\sf \implies \displaystyle \int_{{ln2} }^{{ln3} } \dfrac{sin(t)}{sin(t) + sin(ln 6 - t)} \dfrac{dt}{2}

\sf \implies I = \dfrac{1}{2}  \displaystyle \int_{{ln2} }^{{ln3} } \dfrac{sin(t)}{sin(t) + sin(ln 6 - t)} dt. - - - - - (1).

As we know that,

Formula of :

\sf \implies \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(a + b - x)} \, dx

Proof :

REPLACE : x = a + b - x.

\sf \implies \int\limits^b_a {f(x)} \, dx

⇒ x = a + b - x.

⇒ dx = - dt.

\sf \implies \int\limits^a_b {f(a + b - x)} \,- dt

a = a + b - t.

\sf \implies \int\limits^b_a {f(a+ b - t) } \, dt

Replace t = x in the equation, we get.

\sf \implies \int\limits^b_a {f(a + b - x)} \, dx

Hence Proved.

Replace,

⇒ t = ㏑3 + ㏑2 - t.

⇒ t = ㏑6 - t.

\sf \implies I = \dfrac{1}{2} \displaystyle \int_{{ln2} }^{{ln3} } \dfrac{sin(ln 6 - t)}{sin(ln 6 - t) + sin(t)}  dt. - - - - - (2).

Adding equation (1) and (2), we get.

\sf \implies 2I = \dfrac{1}{2} \displaystyle \int_{{ln2} }^{{ln3} } \dfrac{sin(t) + sin(ln 6 - t)}{sin(t )+ sin(ln 6 - t)} dt.

\sf \implies 2I = \dfrac{1}{2} \displaystyle \int_{{ln2} }^{{ln3} } dt.

Putt the upper and lower limit in the equation, we get.

\sf \implies 2I = \dfrac{1}{2} \displaystyle \bigg[t \bigg]_{ln 2}^{ln 3}

\sf \implies 2I = \dfrac{1}{2} \displaystyle \bigg[ ln 3 - ln 2 \bigg]

\sf \implies I = \dfrac{1}{4} ln \dfrac{3}{2}

                                                                                                                       

MORE INFORMATION.

Properties of definite integration.

\sf (1) = \int\limits^b_a {f(x)} \, dx  = \int\limits^b_a {f(t)} \, dt

\sf (2) = \int\limits^b_a {f(x)} \, dx = - \int\limits^a_b {f(x)} \, dx

\sf (3) = \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ \ where \ \ a < c < b.

\sf (4) = \int\limits^a_0 {f(x)} \, dx = \int\limits^a_0 {f(a - x)} \, dx

\sf (5) = \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(a + b - x)} \, dx



Discussion

No Comment Found

Related InterviewSolutions