| 1. |
Integrate with the limits √ln2 to √ln3 x*sinx^2/sinx^2+sin(ln6-x^2) dx |
Answer» EXPLANATION.As we know that, We can use substitution method in this equation, we get. Let, we assume that. ⇒ x² = t. Differentiate w.r.t x, we get. ⇒ 2x dx = dt. ⇒ x dx = dt/2. As we know that, In definite integration, if we apply substitution method then limit will also CHANGE, we get. First, we put the lower limit, we get. ⇒ (√㏑2)² = t. ⇒ ㏑2 = t. = [NEW lower limit]. ⇒ (√㏑3)² = t. ⇒ ㏑3 = t. = [new UPPER limit]. Put the values in the equation, we get. As we know that, Formula of : Proof : REPLACE : x = a + b - x. ⇒ x = a + b - x. ⇒ dx = - dt. a = a + b - t. Replace t = x in the equation, we get. Hence Proved. Replace, ⇒ t = ㏑3 + ㏑2 - t. ⇒ t = ㏑6 - t. Adding equation (1) and (2), we get. Putt the upper and lower limit in the equation, we get. MORE INFORMATION.Properties of definite integration. |
|