1.

Integration tan³x dx​

Answer»

ANSWER:

Step-by-step explanation:

\\\tt \int\limits tan^3x \, dx  \\= \int\limits (tan^2x )(tan x) \, dx \\= \int\limits (sec^2x-1 )(tan x) \, dx \\=  \int\limits sec^2x (tan x) \, dx - \int\limits tan x \, dx

Now lets split this into two PARTS just to MAKE it LOOK clean:

Let

y = sex x

then dy = secx tanx dx

Now solving the first term:

 \\\tt \int\limits y (sec x \  tanx) \, \dfrac{dy}{(sec x \  tanx) }\\\\=\int\limits y dy \\\\=\dfrac{y^{2} }{2} +  C_{1}\\=\dfrac{sec^{2}x }{2} +  C_{1}\\

For the SECOND part:

Let t = cos x

then dt = sin x dx

Now,

\\\tt\\  \int\limits tan x \, dx  \\ =  \int\limits \dfrac{sin x }{cos x}  \, dx \\= \int\limits \dfrac{sin x }{t}  \, \dfrac{dt }{sin x} \\\\= \int\limits \dfrac{1 }{t}  dt  \\\\= log_{e} |cos x| + C_{2}

Combining these two gives

\\\tt \int\limits tan^3x \, dx = \dfrac{sec^{2}x }{2} - log_{e} |cos x|  +C



Discussion

No Comment Found

Related InterviewSolutions