1.

Lengths of the tangents from A,B and C to the incircle are in A.P., thenA. `r_(1) , r_(2) r_(3)` are in H.PB. `r_(1), r_(2), r_(3)` are in APC. a, b, c are in A.PD. `cos A = (4c -3b)/(2c)`

Answer» Correct Answer - A::C::D
Given that `s -a, s-b, and s-c` are in A.P.
`rArr a, b ,c` are in A.P.
`rarr (Delta)/(s-a), (Delta)/(s-b),(Delta)/(s-c)` are in H.P
`rArr r_(1), r_(2), r_(3)` are in H.P.
Also, `cos A = (b^(2) + c^(2) -a^(2))/(2bc)`
`= (b^(2) + c^(2) - (2b -c)^(2))/(2bc) = (4c - 3b)/(2c)`


Discussion

No Comment Found

Related InterviewSolutions