1.

Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3), (2, 2), (2, 1), (3, 3)}, R2={(2,2),(3,1), (1, 3)}, R3 = {(1, 3),(3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.

Answer»

We have been given,

A = {1, 2, 3}

Here, R1, R2, and R3 are the binary relations on A.

So, recall that for any binary relation R on set A. We have,

R is reflexive if for all x ∈ A, xRx.

R is symmetric if for all x, y ∈ A, if xRy, then yRx.

R is transitive if for all x, y, z ∈ A, if xRy and yRz, then xRz.

So, using these results let us start determining given relations.

Let us take R1.

R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}

(i). Reflexive:

∀ 1, 2, 3 ∈ A [∵ A = {1, 2, 3}]

(1, 1) ∈ R1

(2, 2) ∈ R2

(3, 3) ∈ R3

So, for a ∈ A, (a, a) ∈ R1

 R1 is reflexive.

(ii). Symmetric:

∀ 1, 2, 3 ∈ A

If (1, 3) ∈ R1, then (3, 1) ∈ R1

[∵ R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}]

But if (2, 1) ∈ R1, then (1, 2) ∉ R1

[∵ R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}]

So, if (a, b) ∈ R1, then (b, a) ∉ R1

∀ a, b ∈ A

 R1 is not symmetric.

(iii). Transitivity:

∀ 1, 2, 3 ∈ A

If (1, 3) ∈ R1 and (3, 3) ∈ R1

Then, (1, 3) ∈ R1

[∵ R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}]

But, if (2, 1) ∈ R1 and (1, 3) ∈ R1

Then, (2, 3) ∉ R1

So, if (a, b) ∈ R1 and (b, c) ∈ R1, then (a, c) ∉ R1

∀ a, b, c ∈ A

 R1 is not transitive.

Now, take R2.

R2 = {(2, 2), (3, 1), (1, 3)}

(i). Reflexive:

∀ 1, 2, 3 ∈ A [∵ A = {1, 2, 3}]

(1, 1) ∉ R2

(2, 2) ∈ R2

(3, 3) ∉ R2

So, for a ∈ A, (a, a) ∉ R2

 R2 is not reflexive.

(ii). Symmetric:

∀ 1, 2, 3 ∈ A

If (1, 3) ∈ R2, then (3, 1) ∈ R2

[∵ R2 = {(2, 2), (3, 1), (1, 3)}]

If (2, 2) ∈ R2, then (2, 2) ∈ R2

[∵ R2 = {(2, 2), (3, 1), (1, 3)}]

So, if (a, b) ∈ R2, then (b, a) ∈ R2

∀ a, b ∈ A

 R2 is symmetric.

(iii). Transitivity:

∀ 1, 2, 3 ∈ A

If (1, 3) ∈ R2 and (3, 1) ∈ R2

Then, (1, 1) ∉ R2

[∵ R2 = {(2, 2), (3, 1), (1, 3)}]

So, if (a, b) ∈ R2 and (b, c) ∈ R2, then (a, c) ∉ R2

∀ a, b, c ∈ A

 R2 is not transitive.

Now take R3.

R3 = {(1, 3), (3, 3)}

(i). Reflexive:

∀ 1, 3 ∈ A [∵ A = {1, 2, 3}]

(1, 1) ∉ R3

(3, 3) ∈ R3

So, for a ∈ A, (a, a) ∉ R3

 R3 is not reflexive.

(ii). Symmetric:

∀ 1, 3 ∈ A

If (1, 3) ∈ R3, then (3, 1) ∉ R3

[∵ R3 = {(1, 3), (3, 3)}]

So, if (a, b) ∈ R3, then (b, a) ∉ R3

∀ a, b ∈ A

 R3 is not symmetric.

(iii). Transitivity:

∀ 1, 3 ∈ A

If (1, 3) ∈ R3 and (3, 3) ∈ R3

Then, (1, 3) ∈ R3

[∵ R3 = {(1, 3), (3, 3)}]

So, if (a, b) ∈ R3 and (b, c) ∈ R3, then (a, c) ∈ R3

∀ a, b, c ∈ A

 R3 is transitive.



Discussion

No Comment Found

Related InterviewSolutions