Saved Bookmarks
| 1. |
Let `A=[(2,1),(0,3)]` be a matrix. If `A^(10)=[(a,b),(c,d)]` then prove that `a+d` is divisible by 13. |
|
Answer» We have `A^(2)=[(2,1),(0,3)][(2,1),(0,3)]=[(4,5),(0,9)]` `A^(3)=A^(2)A=[(4,5),(0,9)][(2,1),(0,3)]=[(8,19),(0,27)]` `implies A^(n) =[(2^(n),3^(n)-2^(n)),(0, 3^(n))]` Now `A^(10)=[(a,b),(c,d)]` `implies a=2^(10), d=3^(10)` So, `a+b=2^(10)+3^(10)=4^(5)+9^(5)`, which is multiple of 13. |
|