1.

Let a,b,c be positive real numbers in H.P. Statement -1: `(a+b)/(2a-b)+(c+b)/(2c-b)ge4` Statement-2: `(a)/(b)+(b)/(c)+(c)/(a)ge3`A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.C. Statement -1 is true, Statement -2 is False.D. Statement -1 is False, Statement -2 is True.

Answer» Correct Answer - B
Since a,b,c are in H.P. Therefore, `b=(2ac)/(a+c)`.
Now, `(a+b)/(2a-b)+(c+b)/(2c-b)=(a+(2ac)/(a+c))/(2a-(2ac)/(a+c))+(c+(2ac)/(a+c))/(2c-(2ac)/(a+c))`
`=(1+3c)/(2a)+(c+3a)/(2c)`
`=(1)/(2)+(3c)/(2a)+(1)/(2)+(3a)/(2c)`
`=1+(3)/(2)((1)/(c)+(c)/(a))`
`ge1+3=4" "[AMgtGM,(a)/(c)+(c)/(a)ge2]`
So, statement-1 is true.
Using `AMgeGm`, we obtain
`(a^(2)c+b^(2)a+c^(2)b)/(3)ge(a^(2)cxxb^(2)axxc^(2)b)^(1//3)`
`rArr" "a^(2)c+b^(2)a+c^(2)bge3abcrArr(a)/(b)+(b)/(c)+(c)/(a)ge3`
So, statement -2 is true.
But, statement -2 is not a correct explanation for statement -1.


Discussion

No Comment Found

Related InterviewSolutions