

InterviewSolution
Saved Bookmarks
1. |
Let `a,b,c,d` be distinct real numbers and a and b are the roots of the quadratic equation `x^2-2cx-5d=0` . If c and d are the roots of the quadratic equation ` x^2-2ax-5b=0` then find the numerical value of `a+b+c+d` |
Answer» Correct Answer - 3 `a+b=2c`.i `ab=-5x`..ii `c+d=2a`……iii `cd=5b`.(iv) From Eqs (i) and (iii) we get `a+b+c+d=2(a+c)` `:.a+c=b+d`………….v From Eqs (i) and (iii) we get `b-d=3(c-a)` …………vi Also `a` is a root of `x^(2)-2cx-5d=0` `:.a^(2)-2ac-5d=0`.......vii As c is a root of `c^(2)-2ac-5b=0`....viii From eqs vii and viii we get `a^(2)-c^(2)-5(d-b)=0` `implies(a+c)(a-c)+5(b-d)=0` `implies(a+c)(a-c)+15(c-a)=0` [ from Eq. (vi)] `implies(a-c)(a+c-15)=0` `:.a+c=15,a-c!=0` From Eq. (v) we get `b+d=15` `:.a+b+c+d=a+c+b+d=15+15=30` `implies` Sum of digits of `a+b|c+d=3+0=3` |
|