Saved Bookmarks
| 1. |
Let a be a `3xx3` matric such that `[(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)]`, then find `A^(-1)`. |
|
Answer» We have, `A[(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)]` To get `A^(-1)`, we have to transform this equation to `AB=I`. So, we will be using elementary column tranformations. Applying `C_(1) harr C_(3)`, we get `A[(3,1,2),(3,0,2),(1,0,1)]=[(1,0,0),(0,1,0),(0,0,1)]` Applying `C_(2) harr C_(3)`, we get `A[(3,1,2),(3,0,2),(1,0,1)]=[(1,0,0),(0,1,0),(0,0,1)]` `implies A^(-1) =[(3,1,2),(3,0,2),(1,0,1)]` |
|