1.

Let A be a `nxxn` matrix such that`A ^(n) = alpha A,` where `alpha ` is a real number different from 1 and - 1. The matrix `A + I_(n)` isA. singularB. invertibleC. scalar matrixD. None of these

Answer» Correct Answer - B
Let `B=A + I_(n)`
`therefore A= B-I_(n)`
Given, `A^(n) =alpha A `
`rArr (B-I_(n) ) ^(n) = alpha (B-I_(n))`
`rArr B^(n) -""^(n)C_(1) B^(n-1) + ""^(n) C_(2) B^(n-2) +...+ (-1) ^(n) I_(n)`
`= alpha B - alphaI_(n)`
`rArr B( B^(n-1) -""^(n)C_(1) B^(n-2) + ""^(n) C_(2) B^(n-3) +...+ (-1) ^(n-1) I_(n)-alphaI_(n))`
`= [(-1)^(n+1) - alpha ]I_(n ) ne 0 [ because alpha ne pm 1]`
Hence, B is invertible.


Discussion

No Comment Found

Related InterviewSolutions