1.

Let `A`be an nth-order square matrix and `B`be its adjoint, then `|A B+K I_n|`is (where `K`is a scalar quantity)`(|A|+K)^(n-2)`b. `(|A|+)K^n`c. `(|A|+K)^(n-1)`d. none of theseA. `(abs(A) +k)^(n-2) `B. `(abs(A) +k)^(n)`C. `(abs(A) +k)^(n-1)`D. `(abs(A) +k)^(n+1)`

Answer» Correct Answer - B
` because ` B = adj A
`rArr AB = A("ajd " A) = abs(A) I_(n)`
`therefore AB + KI_(n )= abs(A) I_(n) + kI_(n) = (abs(A) + k ) I_(n)`
`rArr abs( AB + KI_(n ))= abs((abs(A) + k))I_(n) = (abs(A) + k )^(n)`


Discussion

No Comment Found

Related InterviewSolutions