1.

Let `a gt 0, b gt 0 and c lt0.` Then, both the roots of the equation `ax^(2) +bx+c=0`A. are real and nagativeB. have negative real partsC. have positive real partsD. None of the above

Answer» Correct Answer - B
Since, `a, b, c gt 0 an ax^(2)+bx+c=0`
`impliesx=(-b)/(2a)+-(sqrt(b^(2)-4ac))/(2a)`
Case I When `b^(2)-4acgt0`
`impliesx=(-b)/(2a)-(sqrt(b^(2)-4ac))/(2a)and (-b)/(2a)+(sqrt(b^(2)-4ac))/(2a)` both roots, are negative.
Case II When `b^(2)-4ac=0`
`impliesx(-b)/(2a),` i.e. both roots are equal and negative
Case III When `b^(2)-4ac lt0`
`impliesx=(-b)/(2a)+-i(sqrt(4ac-b^(2)))/(2a)` have negative real part.
`therefore` Form above discussion, both roots have negative real parts


Discussion

No Comment Found

Related InterviewSolutions