InterviewSolution
Saved Bookmarks
| 1. |
Let `a_(i) = i+ (1)/(i)` for i= 1 , 2 …………. , 20. Put `p = (1)/(20) ( a_(1) + a_(2) +……… + a_(20))` and `q = (1)/(20) ((1)/(a_(1)) + (1)/(a_(2)) + ……… + (1)/(a_(20)))`. ThenA. ` q in ( 0 , (22 - p)/(21))`B. `q in ((22- p)/(21) , (2(22-p))/(21))`C. `q in ((2 (22 - p))/(21), (22-p)/(7))`D. `q in ((22 - p)/(7), (4 (22 -p))/(21))` |
|
Answer» Correct Answer - A `q gt 0` try to the contra prove that `q lt (22 - p)/(21)` ` q + (p)/(21) lt (22)/(21)` `q + (p)/(21) = (1)/(20)[sum_(i = 1)^(20) (1)/(a_(i)) + (1)/(21) sum_(i = 1)^(20) a_(i)]` `= (1)/(20)[sum_(i=1)^(20) ((i)/(i^(2) + 1)) + (1)/(21) sum_(i=1)^(20) ( i + (1)/(i))]` `= (1)/(2) + (1)/(20) [sum_(i = 1)^(20) (i)/(i^(2) + 1) + sum_(i=1)^(20)((1)/(21i))]` `(1)/(2) + (1)/(20)[(1)/(2) + sum_(i=2)^(20) (i)/(i^(2) + 1) + sum_(i=1)^(20) (1)/(21i)]` `lt (1)/(2) + (1)/(20) [ (1)/(2) + (2)/(5) sum_(i=2)^(20) 1 + (1)/(21)sum_(i = 1)^(20)1]` `lt (1)/(2) + (1)/(20) [ (1)/(2) + (2)/(5) xx 19 + (1)/(21) xx 20]` `lt (1)/(2) + (1)/(20) (1 + 8 + 1)` `lt (1)/(2) + (1)/(2)` `lt (22)/(21)` |
|