1.

Let `A={x inN:x^(2)-5x+6=0},B={x inW:0lexlt2}`and `C={x inN:xlt3}.` Verify that (i) `Axx(BuuC)=(AxxB)uu(AxxC)` (ii) `Axx(BnnC)=(AxxB)nn(AxxC)`

Answer» We have
`A={x inN:x^(2)-5x6=0}={x inN:(x-2)(x-3)=0}={1,2).`
`:." "A={2,3},B={0,1}" and "C={1,2}.`
(i) `(BuuC)={0,1}uu{1,2}={0,1,2}.`
`:." "Axx(BuuC)={2,3}xx{0,1,2}`
`={(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)}.`
Now, `(AxxB)={2,3}xx{0,1}`
`={(2,0),(2,1),(3,0),(3,1)}`
and `(AxxC)={2,3}xx{1,2}`
`={(2,1),(2,2),(3,1),(3,2)}.`
`:." "(AxxB)uu(AxxC)={(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)}.`
Hence, `Axx(BuuC)=(AxxB)uu(AxxC).`
(ii) `(BuuC)={0,1}nn{1,2}={1}.`
`:." "Axx(BnnC)={2,3}xx{1}={(2,1),(3,1)}.`
And,
`(AxxB)nn(AxxC)={(2,0),(2,1),(3,0),(3,1)}nn{(2,1),(2,2),(3,1),(3,2)}`
`={(2,1),(3,1)}.`
Hence, `Axx(BnnC)=(AxxB)nn(AxxC).`


Discussion

No Comment Found

Related InterviewSolutions