1.

Let a0 = 0 and ax = 3an–1 + 1 for n ≥ 1. Then the remainder obtained dividing a2010 by 11 is- (A) 0 (B) 7 (C) 3 (D) 4 

Answer»

Correct Option :- (A) 0

Explanation :-

an = 3an–1 + 1 

a2010 = 3a2009 + 1 

= 3(3a2008 + 1) + 1 

= 32 a2008 + 3 + 1 

= 33 a2007 + 3 + 3 + 1 

.

.

.

.

32010 a0 +(3 + 3 + ...3) + 1  ------{2009 times}

= 0 + 6027 + 1 = 6028 

Remainder (6028/11) = 0 



Discussion

No Comment Found

Related InterviewSolutions