1.

let `alpha,beta` be the roots of `x^2-x+p=0` and `gamma,delta` be the roots of `x^2-4x+q=0` . if `alpha,beta,gamma,delta` are in `G.P.` then the integral values of `p&q` respectively , are

Answer» given that eqn `x^2- x + p = 0` having roots
`(alpha, beta)`
`x^2 - 4*x +q = 0` having roots
`(gamma, delta)`
`alpha, beta, gamma, delta` are in GP
terms will be as `a, a*r , ar^2, a*r^3` in GP
`alpha + beta= 1 & gamma + delta = 4`
`alpha*beta= p & gamma*delta= q`
now, `a + a*r = 1`
`a(1+r) = 1` eqn (1)
`a^2*r = p` eqn (2)
`a*r^2 + a*r^3 = 4`
`a*r^2 *(1+r) = 4` eqn (3)
`a^2*r^5= q` eqn (4)
dividing eqn 3 by 1` (a*r^2*(r+1))/(a*(r+1)) = 4/1`
`r^2 = 4`
`r = +- 2`
now, ` a(r+1) = 1`
` r= 2, a=1/3`
`a= 1/(r+1) , r=-2, a=-1`
`alpha= -1 , beta= 2, gamma = -4 , delta = 8`
`alpha = 1/3 , beta = 2/3 , gamma = 4/3 , delta = 8/3`
`p = alpha* beta = a*a*r = -2`
`q= gamma* delta = -4*8 =-32`


Discussion

No Comment Found

Related InterviewSolutions