1.

Let `arg(z_(k))=((2k+1)pi)/(n)` where `k=1,2,………n`. If `arg(z_(1),z_(2),z_(3),………….z_(n))=pi`, then `n` must be of form `(m in z)`A. `4m`B. `2m-1`C. `2m`D. None of these

Answer» Correct Answer - B
`(b)` `arg(z_(1),z_(2),z_(3)……….z_(n))=pi`
`impliesarg(z_(1))+arg(z_(2))+….+arg(z_(n))=pi+-2mpi`, `m in I`
`implies (pi)/(n)[3+5+7+….+(2n+1)]=pi+-2mpi`
`implies(pi)/(n)[(n)/(2)[6+2(n-1)]]=pi+-2mpi`
`implies3+n-1=1+-2m`
`impliesn=-1=1+-2m`


Discussion

No Comment Found

Related InterviewSolutions