1.

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3`

Answer» `|alpha-Z_0|=r-(1)`
`|1/alpha-Z_0|=2r`
`z|z_0|^2=r^2+2-(3)`
`|alpha/|alpha|^2-Z_0|=2r-(2)`
`alpha*overlinealpha=|alpha|^2`
`1/overlinealpha=alpha/|alpha|^2`
squaring equation 1
`|alpha|^2+|Z_0|^2-(alphaoverlineZ_0+overlinealphaZ_0)=r^2`
`|alpha|^2+r^2/2+1-(alphaoverlineZ_0+overlinealphaZ_0)=r^2-(4)`
`|alpha|^2/|alpha|^4+|Z_0|^2-((alphaoverlineZ_0+overlinealphaZ_0)/|alpha|^2)=4r^2`
`1/|alpha|^2(1-(alphaoverlineZ_0+overlinealphaZ_0))=4r^2-|Z_0|^2`
`=4r^2-((r^2+2)/2)`
`=(7r^2)/2-1`
`(1-(alphaoverlineZ_0+overlinealphaZ_o))=|alpha|^2[(7r^2)/2-1]`
From equation 4
`|alpha|^2+r^2/2+1-(1+|alpha|^2(1-(7r^2)/2))=r^2`
`r^2/2+|alpha|^2*(7r^2)/2=r^2`
`|alpha|^2*(7r^2/2)=r^2/2`
`|alpha|^2=1/7`
`|alpha|=1/sqrt7`
Option C is correct.


Discussion

No Comment Found