InterviewSolution
Saved Bookmarks
| 1. |
Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3` |
|
Answer» `|alpha-Z_0|=r-(1)` `|1/alpha-Z_0|=2r` `z|z_0|^2=r^2+2-(3)` `|alpha/|alpha|^2-Z_0|=2r-(2)` `alpha*overlinealpha=|alpha|^2` `1/overlinealpha=alpha/|alpha|^2` squaring equation 1 `|alpha|^2+|Z_0|^2-(alphaoverlineZ_0+overlinealphaZ_0)=r^2` `|alpha|^2+r^2/2+1-(alphaoverlineZ_0+overlinealphaZ_0)=r^2-(4)` `|alpha|^2/|alpha|^4+|Z_0|^2-((alphaoverlineZ_0+overlinealphaZ_0)/|alpha|^2)=4r^2` `1/|alpha|^2(1-(alphaoverlineZ_0+overlinealphaZ_0))=4r^2-|Z_0|^2` `=4r^2-((r^2+2)/2)` `=(7r^2)/2-1` `(1-(alphaoverlineZ_0+overlinealphaZ_o))=|alpha|^2[(7r^2)/2-1]` From equation 4 `|alpha|^2+r^2/2+1-(1+|alpha|^2(1-(7r^2)/2))=r^2` `r^2/2+|alpha|^2*(7r^2)/2=r^2` `|alpha|^2*(7r^2/2)=r^2/2` `|alpha|^2=1/7` `|alpha|=1/sqrt7` Option C is correct. |
|